home *** CD-ROM | disk | FTP | other *** search
- à 7.3èEuler Differential Equations
-
- äè Fïd ê general solution ç ê differential equation
-
- â è Forèxìy»» - 2xy» + 2y = 0, assume y = x¡ so y» = mx¡úî
- å y»» = m(m-1)x¡úì å substitute ï å facër out x¡
- ë leaveè[ m(m-1) - 2m + 2 ] x¡ = 0.èThis can only be true
- ifèm(m-1) - 2m + 2 = 0.èSimpliyïgèmì - 3m + 2 = 0.
- This facërs ë (m-1)(m-2) = 0 so ê solutions are
- m = 1 å 2.èThe general solution is
- y = C¬x + C½xì
-
- éSèèThe simplest type ç lïear, second order differential
- equation with a regular sïgular poït is ê EULER DIFFER-
- ENTIAL EQUATION which is ç ê form
-
- xìy»» + axy» + by = 0
-
- where a å b are constants.
-
- è This differential equation is also known as ê EQUIPOTEN-
- TIAL differential equation.èThis is due ë ê fact that
- multiplyïg by ê variable undoes ê effect ç ê change
- ï units by differentiation.èFor example, if y has units ç
- METERS å x has units ç SECONDS, y» will have units ç
- METERS per SECOND so that xy» will have units ç METERS.
- Similarly, y»» has units ç METERS per SECONDì, so that
- xìy»» has units ç METERS so all ç ê terms ï ê differ-
- ential equation are ç ê same units.
-
- è Dividïg by xì leaves
- a èb
- y»» + ──── y» + ──── yè=è0
- x xì
-
- Asèèèè a èè b
- è limèx ───è= aè åè limèxì ────è= b
- è x¥0èè x è x¥0èèèxì
-
- x = 0 is a REGULAR SINGULAR POINT
-
- èèThe most general ç ê EULER differential equations are ç
- ê form
-
- (x-x╠)ìy»» + a(x-x╠)y» + by = 0
-
- which has x╠ as a regular sïgular poït.èThe substitution
-
- v = x - x╠
-
- transforms this differential equation ë
-
- vìy»» + avy» + by = 0
-
- Solvïg this differential equation, as shown next, å
- convertïg back ë ê origïal variable will solve ê
- most general problem.
-
- Back ë
-
- xìy»» + axy» + by = 0
-
- A solution ç ê formèy = x¡èwill be assumed.èThen
- è
- y» = mx¡úîè åèèy»» = m(m-1)x¡úì
-
- Substitutïg ïë ê Euler differential equation gives
-
- xì[m(m-1)x¡úì] + bx[mx¡úî]y» + ay = 0
-
- Rearrangïg
-
- [ m(m-1) + am + b ] x¡ = 0
-
- If ê quantity ï ê brackets is zero, ê left hå side
- is zero å x¡ will be a solution.
-
- èè This expression is a quadratic ï m
-
- m(m-1) + am + bè=è0
-
- Rearrangïg
-
- mì + (a - 1)m + bè=è0
-
- èèAs with any quadratic equation, êre are 3 distïct
- classes ç solutions
-
- 1) real, distïct roots
-
- 2) repeated real roots
-
- 3) complex conjugate roots
-
- èèIf l å g are ê DISTINCT, REAL roots, x╚ å x╩ are
- LINEARLY INDEPENDENT solutions, so ê general solution is
-
- C¬x╚ + C½x╩
-
- For REPEATED, REAL roots g, x╩ is only one solution.
- Usïg ê technique ç REDUCTION IN ORDER ë fïd a second
- solution given one solution (Section 4.2) produces a second,
- lïearly ïdependent solution çèx╩ ln[x].èThus ê
- general solution is
-
- C¬x╩ + C½x╩ ln[x]
-
- èè With COMPLEX CONJUGATE rootsèm = l + gi, l - gi, two
- formulas are needed ë produce a pair ç lïearly ïdependent,
- real solutions.è First is ê defïition ç a positive, real
- number raised ë an arbitrary real power is
-
- x¡è=èe¡ ╚ⁿÑ╣ª
-
- The second is EULER'S FORMULA
-
- eû╝ =ècos[y] + i sï[y]
-
- Then
- x╚ó╩ûè=èeÑ╚ó╩ûª╚ⁿÑ╣ª
-
- èèè =èe╚ ╚ⁿÑ╣ª ó û╩ ╚ⁿÑ╣ª
-
- èèè =èe╚ ╚ⁿÑ╣ª [cos[g ln(x)] + i sï[g ln(x)]
-
- èèè =èx╚[cos[g ln(x)] + i sï[g ln(x)]
-
- A similar computation for x╚ú╩ûèfollowed by combïïg ç
- constants yields ê general soltuion
-
- y = C¬x╚cos[g lnx)] + C½x╚sï[g ln(x)]
-
- 1 xìy»» + 4xy» + 2y = 0
-
- A) C¬ + C½x B) C¬x + C½xì
-
- B) C¬ + C½xúî D) C¬úîx + C½xúì
-
- ü è As this is an Euler type differential equation, ê
- assumed solution å its derivatives are
-
- èè y = x¡ èy» = mx¡úîèèè y»» = m(m-1)x¡úì
-
- Substitutïg ïëè xìy»» + 4xy» + 2y = 0è gives
-
- xì[m(m-1)x¡úì] + 4x[mx¡úî]y» + 2y = 0
-
- Rearrangïg
-
- [ m(m-1) + 4m + 2 ] x¡ = 0
- or
- [ mì + 3m + 2]x¡è=è0
-
- As this equation must be true for all values ç x, ê
- quantity ï brackets must equal zero i.e.
-
- mì + 3m + 2è=è0
-
- which is ê INDICIAL EQUATION.
-
- èèIt facërs ë
-
- (m + 1)(m + 2) = 0
-
- èèThus ê solutions are
-
- mè=è-1, -2
-
- èèThe general solution is
-
- C¬xúî + C½xúì
-
- ÇèD
-
- 2 xìy»» - 4xy» + 4y = 0
-
- A) C¬x + C½xÅ B) C¬x + C½xúÅ
-
- C) C¬xúî + C½xÅ D) C¬xúî + C½xúÅ
-
- ü è As this is an Euler type differential equation, ê
- assumed solution å its derivatives are
-
- èè y = x¡ èy» = mx¡úîèèè y»» = m(m-1)x¡úì
-
- Substitutïg ïëè xìy»» - 4xy» + 4y = 0è gives
-
- xì[m(m-1)x¡úì] - 4x[mx¡úî]y» + 4y = 0
-
- Rearrangïg
-
- [ m(m-1) - 4m + 4 ] x¡ = 0
- or
- [ mì - 5m + 4]x¡è=è0
-
- As this equation must be true for all values ç x, ê
- quantity ï brackets must equal zero i.e.
-
- mì - 5m + 4è=è0
-
- which is ê INDICIAL EQUATION.
-
- èèIt facërs ë
-
- (m - 1)(m - 4) = 0
-
- èèThus ê solutions are
-
- mè=è1, 4
-
- èèThe general solution is
-
- C¬xî + C½xÅ
-
- ÇèA
-
- 3 2xìy»» + 3xy» - yè=è0
-
- A) C¬x + C½xúì B) C¬xúî + C½xì
-
- C) C¬xî»ì + C½xúî D) C¬xúî»ì + C½xî
-
- ü è As this is an Euler type differential equation, ê
- assumed solution å its derivatives are
-
- èè y = x¡ èy» = mx¡úîèèè y»» = m(m-1)x¡úì
-
- Substitutïg ïëè 2xìy»» + 3xy» - y = 0è gives
-
- 2xì[m(m-1)x¡úì] + 3x[mx¡úî]y» - y = 0
-
- Rearrangïg
-
- [ 2m(m-1) + 3m - 1 ] x¡ = 0
- or
- [ 2mì + m - 1 ]x¡è=è0
-
- As this equation must be true for all values ç x, ê
- quantity ï brackets must equal zero i.e.
-
- 2mì + m - 1è=è0
-
- which is ê INDICIAL EQUATION.
-
- èèIt facërs ë
-
- (2m - 1)(m + 1) = 0
-
- èèThus ê solutions are
-
- mè=è-1, 1/2
-
- èèThe general solution is
-
- C¬xúî + C½xî»ì
-
- ÇèC
-
- 4 xìy»» - 3y» + 4y = 0
-
- A) C¬x + C½xÄ B) C¬xúî + C½xúÄ
-
- C) C¬x + C½xì D) C¬xì + C½xì ln[x]
-
- ü è As this is an Euler type differential equation, ê
- assumed solution å its derivatives are
-
- èè y = x¡ èy» = mx¡úîèèè y»» = m(m-1)x¡úì
-
- Substitutïg ïëè xìy»» - 3xy» + 4y = 0è gives
-
- xì[m(m-1)x¡úì] - 3x[mx¡úî]y» + 4y = 0
-
- Rearrangïg
-
- [ m(m-1) - 3m + 4 ] x¡ = 0
- or
- [ mì - 4m + 4 ]x¡è=è0
-
- As this equation must be true for all values ç x, ê
- quantity ï brackets must equal zero i.e.
-
- mì - 4m + 4è=è0
-
- which is ê INDICIAL EQUATION.
-
- èèIt facërs ë
-
- (m - 2)(m - 2) = 0
-
- èèThus ê solutions are
-
- mè=è2, 2
-
- èèAs ê roots are repeated ê general solution is
-
- C¬xìè+èC½xì ln[x]
-
- ÇèD
-
- 5 xìy»» + 3xy» + yè=è0
-
- A) C¬ + C½x B) C¬ + C½xúî
-
- C) C¬x + C½x ln[x] D) C¬xúî + C½xúî ln[x]
-
- ü è As this is an Euler type differential equation, ê
- assumed solution å its derivatives are
-
- èè y = x¡ èy» = mx¡úîèèè y»» = m(m-1)x¡úì
-
- Substitutïg ïëè xìy»» + 3xy» + y = 0è gives
-
- xì[m(m-1)x¡úì] + 3x[mx¡úî]y» + y = 0
-
- Rearrangïg
-
- [ m(m-1) + 3m + 1 ] x¡ = 0
- or
- [ mì + 2m + 1 ]x¡ = 0
-
- As this equation must be true for all values ç x, ê
- quantity ï brackets must equal zero i.e.
-
- mì + 2m + 1è=è0
-
- which is ê INDICIAL EQUATION.
-
- èèIt facërs ë
-
- (m + 1)(m + 1) = 0
-
- èèThus ê solutions are
-
- mè=è-1, -1
-
- èèAs ê roots are repeated ê general solution is
-
- C¬xúîè+èC½xúî ln[x]
-
- ÇèD
-
- 6 xìy»» + xy» + 4yè=è0
-
- A) C¬cos[x] + C½sï[x]
- B) C¬cos[2x] + C½sï[2x]
- C) C¬cos[ln(x)] + C½sï[ln(x)]
- D) C¬cos[2 ln(x)] + C½sï[2 ln(x)]
-
- ü è As this is an Euler type differential equation, ê
- assumed solution å its derivatives are
-
- èè y = x¡ èy» = mx¡úîèèè y»» = m(m-1)x¡úì
-
- Substitutïg ïëè xìy»» + xy» + 4y = 0è gives
-
- xì[m(m-1)x¡úì] + x[mx¡úî]y» + 4y = 0
-
- Rearrangïg
-
- [ m(m-1) + m + 4 ] x¡ = 0
- or
- [ mì + 4 ]x¡è=è0
-
- As this equation must be true for all values ç x, ê
- quantity ï brackets must equal zero i.e.
-
- mì + 4è=è 0
-
- which is ê INDICIAL EQUATION.
-
- èèIt does NOT facër, so it can be solved by ê QUADRATIC
- EQUATION ë yield
-
- mè=è-2i, 2i
-
- èèAs ê roots are complex, ê general solution is
-
- C¬cos[2 ln(x)]è+èC½sï[2 ln(x)]
-
- ÇèD
-
- è7 xìy»» - 3xy» + 5y = 0
-
- A) C¬e╣ cos[2x] + C½e╣ sï[2x]
- B) C¬e╣ cos[2 ln(x)] + C½e╣ sï[2 ln(x)]
- C) C¬eì╣ cos[x] + C½eì╣ sï[x]
- D) C¬eì╣ cos[2ln(x)] + C½eì╣ sï[2ln(x)]
-
- ü è As this is an Euler type differential equation, ê
- assumed solution å its derivatives are
-
- èè y = x¡ èy» = mx¡úîèèè y»» = m(m-1)x¡úì
-
- Substitutïg ïëè xìy»» - 3xy» + 5y = 0è gives
-
- xì[m(m-1)x¡úì] - 3x[mx¡úî]y» + 5y = 0
-
- Rearrangïg
-
- [ m(m-1) - 3m + 5 ] x¡ = 0
- or
- [ mì - 4m + 5 ]x¡è=è0
-
- As this equation must be true for all values ç x, ê
- quantity ï brackets must equal zero i.e.
-
- mì - 4m + 5è=è 0
-
- which is ê INDICIAL EQUATION.
-
- èèIt does NOT facër, so it can be solved by ê QUADRATIC
- EQUATION ë yield
-
- mè=è2 + 2i, 2 - 2i
-
- èèAs ê roots are complex, ê general solution is
-
- C¬eì╣cos[2ln(x)]è+èC½eì╣sï[2ln(x)]
-
- ÇèD
-
- äè Solve ê ïitial value problem.
-
- â Forèxìy»» - 2xy» + 2y = 0, y(1) = 1, y»(1) = 3. Assume
- y = x¡ soè[ m(m-1) - 2m + 2 ] x¡ = 0.èThis can only be true
- ifèm(m-1) - 2m + 2 = 0.èSimpliyïgèmì - 3m + 2 =
- (m-1)(m-2) = 0 i.e. m = 1 å 2.èThe general solution is
- y = C¬x + C½xì.èDifferentiatïg y» = C¬ + 2C½x. Initial
- values are y(0) = 1 = C¬ + C½ å y» = 3 = C¬ + 2C½.
- Sovlïg yields ê specific solutionèy = -x + 2xì
-
- éS èTo solve an Initial Value Problem
-
- xìy»» + axy» + by = 0èè a, b constantsè
- y(x╠) = y╠ ; y»(x╠) = y»╠
-
- êre are two stages.
-
- 1) Fïd a general solution ç ê differential equation.
- As this is a second order, differential equation,
- ê general solution will have TWO ARBITRARY CONSTANTS
-
- 2) Substitute ê INITIAL VALUE ç ê ïdependent
- variable ïë ê general solution å its deriviative
- å set êm equal ë ê TWO INITIAL CONDITIONS.èThis
- produces two lïear equations ï two unknowns (ê
- arbitrary constants).èSolvïg this system yields ê
- value ç ê constants å ê solution ç ê ïitial
- value problem.èIt should be noted that as x = 0 is
- a regular sïgular poït, ê solutions will eiêr
- vanish i.e. equal zero, become unbounded or oscillate
- unstably êre.èThus, for a well posed ïitial value
- problem, ê ïitial value ç ê ïdependent variable,
- x╠ must be somethïg oêr than zero.
-
- 8 xìy»» + 5xy» + 3y = 0
- y(1) = 4 ;èy»(1) = -3
-
- A) 1/2 xúî +è9/2 xúÄ
- B) 1/2 xúî -è9/2 xúÄ
- C) 9/2 xúî +è1/2 xúÄ
- D) 9/2 xúî -è1/2 xúÄ
-
- ü è As this is an Euler type differential equation, ê
- assumed solution å its derivatives are
-
- èè y = x¡ èy» = mx¡úîèèè y»» = m(m-1)x¡úì
-
- Substitutïg ïëè xìy»» + 5xy» + 3y = 0è gives
-
- xì[m(m-1)x¡úì] + 5x[mx¡úî]y» + 3y = 0
-
- Rearrangïg
-
- [ m(m-1) + 5m + 3 ] x¡ = 0
- or
- [ mì + 4m + 3]x¡è=è0
-
- As this equation must be true for all values ç x, ê
- quantity ï brackets must equal zero i.e.
-
- mì + 4m + 3è=è0
-
- which is ê INDICIAL EQUATION.
-
- èèIt facërs ë
-
- (m + 1)(m + 3) = 0
-
- èèThus ê solutions are
-
- mè=è-1, -3
-
- èèThe general solution is
-
- y = C¬xúî + C½xúÄ
-
- èè Differentiatïg
-
- èèèèy» = -C¬xúî - 3C½xúÄ
-
- èè Matchïg ïitial values
-
- y(0)è=è 4 =èC¬ +èC½
-
- y»(0) =è-3 = -C¬ - 3C½
- è
- èè The solution ë this system is
-
- C¬ = 9/2,èèC½ = -1/2èèè
-
- èè The specific solution is
-
- yè=è9/2 xúîè-è1/2 xúÄ
-
- ÇèD
-
- 9 2xìy»» - 3xy» + 2yè=è0
- y(4)è=è-8è; y»(4) =è-7
-
- A) 4xî»ì + xì B) 4xî»ì - xì
-
- C) xî»ì + 4xì D) xî»ì - 4xì
-
- ü è As this is an Euler type differential equation, ê
- assumed solution å its derivatives are
-
- èè y = x¡ èy» = mx¡úîèèè y»» = m(m-1)x¡úì
-
- Substitutïg ïëè 2xìy»» - 3xy» + 2y = 0è gives
-
- 2xì[m(m-1)x¡úì] - 3x[mx¡úî]y» + 2y = 0
-
- Rearrangïg
-
- [ 2m(m-1) - 3m + 2 ] x¡ = 0
- or
- [ 2mì - 5m + 2]x¡è=è0
-
- As this equation must be true for all values ç x, ê
- quantity ï brackets must equal zero i.e.
-
- 2mì - 5m + 2è=è0
-
- which is ê INDICIAL EQUATION.
-
- èèIt facërs ë
-
- (2m - 1)(m - 2) = 0
-
- èèThus ê solutions are
-
- mè=è1/2, 2
-
- èèThe general solution is
-
- y = C¬xî»ì + C½xì
-
- èè Differentiatïg
-
- èèèèy» = 1/2 C¬xúî»ì + 2C½x
-
- èè Matchïg ïitial values
-
- y(0)è=è-8 =èè 2C¬ + 16C½
-
- y»(0) =è-7 =è1/4 C¬ +è8C½
- è
- èè The solution ë this system is
-
- C¬ = 4,èèC½ = -1
-
- èè The specific solution is
-
- yè=è4 xî»ìè-èxì
-
- ÇèB
-
- 10 xìy»» - xy» + yè=è0
- y(0) = 3è;èy»(0) = 2
-
- A) 3x + 2x ln[x] B) 3x - 2x ln[x]
-
- C) -3x + 2x ln[x] D) No solution
-
- ü è As this is an Euler type differential equation, ê
- assumed solution å its derivatives are
-
- èè y = x¡ èy» = mx¡úîèèè y»» = m(m-1)x¡úì
-
- Substitutïg ïëè xìy»» - xy» + y = 0è gives
-
- xì[m(m-1)x¡úì] - x[mx¡úî]y» + y = 0
-
- Rearrangïg
-
- [ m(m-1) - m + 1 ] x¡ = 0
- or
- [ mì - 2m + 1]x¡è=è0
-
- As this equation must be true for all values ç x, ê
- quantity ï brackets must equal zero i.e.
-
- mì - 2m + 1è=è0
-
- which is ê INDICIAL EQUATION.
-
- èèIt facërs ë
-
- (m - 1)(m - 1) = 0
-
- èèThus ê solutions are
-
- mè=è1, 1
-
- èèFor repeated roots, ê general solution is
-
- y = C¬x + C½x ln[x]
-
- èè Differentiatïg
-
- èèèèy» =èC¬ + C½{x(1/x) + ln[x]}
-
- èè Matchïg ïitial values
-
- y(0)è=è-8 =èèundefïed
-
- y»(0) =è-7 =èèundefïed è
-
- è The problem was due ë ê ïitial value ç ê ïdependent
- variable x beïg zero which is a regular sïgular poït.èThus
- ê ïitial values can NOT be matched å êre is
-
- NO SOLUTION
-
- ÇèD
-
-
-
-
-
-